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Abstract 
Cardiac Myocytes are also known to state 
voltage-gated Ca2+ channels analogous  in 
neurons. Calcium ion is a significant 
negotiator in cardiac Myocytes for excitation-
contraction pairing. At the cellular stage, the 
real meaning of a heartbeat is a rise of calcium 
concentration. The increased concentration of 
Calcium causes a temporary disarticulation of 
contractile filaments, which shows the 
reduction of cell. Succeeding lessening of Ca 
leads relaxation of the my filaments and 
increase in the size of cell. The role of Calcium 
Distribution in Myocytes is not still well 
understood. The investigational approaches 
are very costly and time taken so problems of 
such mathematical modeling  is one more 
substitute. In this paper it is planned to extend 
Mathematical Models to study Calcium 
Distribution in Cardiac Myocytes. Suitable 
boundary conditions have been framed. 
Keywords: Ca2+ profile, buffer, Advection 
diffusion reaction. 
I. INTRODUCTION 
Nowadays the up-and-coming area is 
Computational Biology which includes 
modeling of mathematics involved organs of 
human beings.Calcium [Ca2+] is necessary for 
almost every method in human organs like 
heartbeat,  contraction of  muscles and very 
important in Cardiac Myocytes. Thus, 
recognition of the factors that involve the 
concentration of calcium ions has been a 
challenge. 
 

 1.1Calcium Signaling in Cardiac Myocytes 
 In inspiring the contraction of heart cells during 
the heart beat, concentration of calcium ions is 
very significant. Myocytes are heart cells which 
are accountable for expansion and contraction of  

 
heart, a procedure responsible for  the pumping 
of blood from heart to the other parts of body. 
Calcium signaling which is taken place by 
reaction diffusion equation in  myocytes for  the 
functioning of heart. Through intracellular 
signals, the cells react immediately to their 
surroundings. The modeling of these problems 
arise new challenges in the field of Mathematics.  
 
As Ca2+ ions distribute far from  voltage gated 
plasma membrane Ca2+ channels and approach 
towards the region having increased 
concentration of ions and trigger proteins 
connected with neurotransmitter release[1]. 
Association and releasing of free Calcium and 
other "Ca2+ buffers" conclude the variety of 
action of Ca2+ ions manipulating the time course 
of their effect and make easy clearance of Ca2+ 
[2]. In this paper, "Ca2+ Buffer" means Ca 
binding species.Ca2+ , confined to a small area 
discharge actions identified as Ca2+ "sparks" are 
observed in Cardiac Myocytes. Ca2+ sparks are 
mediated by RYRS located on the intracellular 
Ca2+ store of muscle cell, the sarcoplasmic 
reticulum (SR). Concentration coupling, Ca2+ 
sparks activated by Ca2+ in flux through 
sarcolemmal Ca2+ channels is the "building 
blocks" of global Ca2+ responses that cause 
muscles contraction. With the help of 
mathematical explanation of electrical actions in 
a cell, cardiac action potentials arise. To a great 
extent the mathematical work of cardiac cell 
modeling is like neurons taken from the original 
work of Hodgkin and Huxley[3], who 
formulated a mathematical explanation of the 
giant squid axon (1952). 
 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)          

 

  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016 
 158 

 
 
2. Literature analysis 

Gregory D. Smith et. al.,[4] have proposed a 
Simple Numerical Model of Calcium Spark 
Formation and Detection in Cardiac Myocytes. 
According to their model, the elementary events 
of excitation-contraction coupling in heart muscle 
are Ca2+ sparks,which arise from one or more 
ryanodine receptors in the sarcoplasmic reticulum 
(SR). BACKX et. al.,[7] constructed a model of 
propagating Calcium-induced Calcium release 
mediated by Calcium diffusion. The model was 
used to evaluate whether propagation of calcium 
transients and the range of propagation velocities 
observed experimentally (0.05-15mm s -1) could 
be predicted. Thomas R. Shannon et. al,[6] 
developed the model includes the following novel 
features: (i) The addition of a subsarcolemmal 
compartment to the other 2 commonly formulated 
cytosolic compartments (junction and bulk) since 
ion channels in the membrane sense ion 
concentrations which differ from bulk. (ii) The 
use of realistic cytosolic Ca buffering parameters 
(iii) A reversible SR Ca pump (iv) A scheme for 
Na-Ca exchange transport which is [Na]i-
dependent and allosterically regulated by [Ca]i 
and   (v) A practical model of SR Ca release 
including both inactivation/adaptation and SR Ca 
load dependence. Luo and Rudy,[7] made a 
dynamic model of the cardiac ventricular action 
potential: Simulations of ionic currents and 
concentration  changes. A mathematical model of 
the cardiac ventricular action potential is 
presented in which The following processes are 
formulated: Ca2+ current through the L-type 
channel , the Na+-Ca2+ exchanger, Ca2+ release 
and uptake by the sarcoplasmic reticulum (SR), 
buffering of Ca2+ in the SR and in the myoplasm, 

a Ca2+ pump in the sarcolemma, the Na+-K+ 
pump, and a nonspecific Ca2+-activated 
membrane current. Depolarizations are induced 
by spontaneous Ca2+ release from the 
sarcoplasmic reticulum (SR), which, in turn, 
activates both the Na+-Ca'+ exchanger  and a 
nonspecific Ca2+-activated current (Ins(Ca)). The 
relative contributions of INaCa and of Ins (Ca,) to 
the generation of DADs are different under 
different degrees of Ca2+ overload..The above 
discussion gives us the idea about mathematical 
model or calcium diffusion in cardiac myocytes 
and neuron cells by  which various research 
workers .This background will be used to perform 
mathematical investigations on calcium dynamics 
in cardiac myocytes. Luo and Rudy [8] made 
another dynamic model of the cardiac ventricular 
action potential. Shannon et. al., 2004 constructed 
a mathematical treatment of Integrated Ca 
dynamics within the ventricular myocyte. The 
model includes the parameters like (i) The 
addition of a subsarcolemmal compartment to the 
other 2 commonly formulated cytosolic 
compartments (junctional and bulk) since ion 
channels in the membrane sense ion  
concentrations which differ from bulk (ii) The use 
of realistic cytosolic Ca buffering parameters (iii) 
A reversible SR Ca pump (iv) A scheme for Na-
Ca exchange transport which is [Na]i-dependent 
and allosterically regulated by [Ca]ion and (v) A 
practical model of SR Ca release including both 
inactivation/adaptation and SR Ca load 
dependence. 
  
Objectives:  
It is planned to extend mathematical models to 
realize the mechanism of Calcium dynamics in 
myocytes. The objectives of this study are as 
follows: 
1. Analyzing the existing model of Calcium 
dynamics in Cardiac myocytes.. 
2. Modifying an extent the existing models of 
Calcium dynamics in Cardiac myocytes for 
studies in differ        rent situations. 
3. Developing new models of calcium regulation 
in Cardiac myocytes which can be useful by bio 
mathematical scientists of clinical applications. 
 4. Studying the impact of various parameters like 
buffers, influxes, out fluxes, leaks and pumps on 
Calcium dynamics in Cardiac  myocytes. 

4.  Methodology 
By assuming a bimolecular association reaction 
between ܽܥଶା and buffer, we have 
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 ܤ  + ଶାܽܥ 
௞ା
      (1)                  ܤܽܥ ⇔

 

In equation 1, B represents free buffer, ܤܽܥ 
represents 	ܽܥଶା bound buffer, and ݇ ା and ݇ ି 
are association and dissociation rate 
constants, respectively. If we further assume 
that the reaction of ܽܥଶା with buffer follows 
mass action kinetics, we can write the 
following system of ODEs for the change in 
concentration of each species   

                 
ௗሾ஼௔మశ	ሿ

ௗ௧
ൌ ܴ ൅                                                                                                                              (2)          					ܬ

                				ௗሾ஻ሿ
ௗ௧

ൌ ܴ                        (3) 

                  
ௗሾ஼௔஻ሿ

ௗ௧
ൌ െܴ                   (4) 

                                                                                                                        
Where the common reaction terms R, are given 
by 
    ܴ ൌ െ݇ାሾܽܥଶା	ሿሾܤሿ ൅ ݇ିሾܤܽܥሿ           (5) 
                                                                                                                      
and J represents ܽܥଶା influx. Both R and J have 
units of concentration of per unit   time.  

 

Equations (2) to (4) are extended to include 
multiple buffers and the diffusive movement of 
free	ܽܥଶା, ܽܥଶା bound buffer and ܽܥଶା free 
buffer. Assuming, Fick’s diffusion in a 
homogeneous, isotropic medium, the system of 
reaction diffusion equations is written as [9]. 

 
డሾ஼௔మశሿ

డ௧
ൌ ଶାሿܽܥଶሾ׏஼௔ܦ ൅	∑ ܴ௜௜ ൅                                                                                                       (6)               ܬ

   

  
డሾ஻೔ሿ

డ௧
ൌ ׏஻೔ܦ

ଶሾܤ௜ሿ ൅	ܴ௜                                   (7)                                                                                                     

 

 
డሾ஼௔஻೔ሿ

డ௧
ൌ ׏஼௔஻೔ܦ

ଶሾܤܽܥ௜ሿ െ	ܴ௜                          (8)                                                                                                     

Where the reaction terms, Ri, are given by 
		ܴ௜ ൌ െ݇௜

ାሾܽܥଶା	ሿሾܤ௜ሿ ൅ ݇௜
ିሾܤܽܥ௜ሿ   

 
Where, i is an index over ܽܥଶା buffers,  ܦ஼௔ , 
 ஼௔஻೔  are diffusion coefficients of freeܦ , ஻೔ܦ
 ଶା , bound calcium and free bufferܽܥ
respectively. 
Since ܽܥଶା	has a molecular weight that is 
small in comparison to most ܽܥଶା	binding 
species, the diffusion constant of each mobile 
buffer is not affected by the binding of 
 . Substituting	௜ܦ= ஼௔஻೔ܦ=  ஻೔ܦ that is	ଶାܽܥ
this in equation (7) & (8) and on summation it 
gives 
డሾ஻೔ሿ೅
డ௧

ൌ       
డሾ஼௔஻೔ሿ

డ௧
൅	డሾ஻೔ሿ

డ௧
ൌ ௜ሿܤܽܥଶሾ׏௜ܦ	 ൅

                                                                                    ௜ሿ்                  (10)ܤଶሾ׏௜ܦ = ௜ሿܤଶሾ׏௜ܦ	
And    

ܴ௜ ൌ െ݇௜
ାሾܽܥଶା	ሿሾܤ௜ሿ ൅ ݇௜

ିሺሾܤ௜ሿ் െ ሾܤ௜ሿሻ 
(11)                                                                                        
Where 
ሾܤ௜ሿ்= ሾܤܽܥ௜ሿ ൅ ሾܤ௜ሿ 
Thus,	ሾܤ௜ሿ், profiles are initially uniform and 
there are no sources or sinks for ܽܥଶା	buffer,  
ሾܤ௜ሿ்	remains uniform for all times. Thus, the 
following equations are written for the 
diffusion of	ܽܥଶା, 
డሾ஼௔మశሿ

డ௧
ൌ ଶାሿܽܥଶሾ׏஼௔ܦ ൅	∑ ܴ௜௜ ൅                       (12)          ܬ

  
డሾ஻೔ሿ

డ௧
ൌ ׏஻೔ܦ

ଶሾܤ௜ሿ ൅	ܴ௜                              (13)                      

Where    
 ܴ௜ ൌ െ݇௜

ାሾܽܥଶା	ሿሾܤ௜ሿ ൅ ݇௜
ିሺሾܤ௜ሿ் െ ሾܤ௜ሿሻ      

(14)                                                                                       
Here both  ܴ௜ & J have units of concentration 
per unit time. 

Considering simplification of equations (2) to 
(4) that come about when buffer parameters are 
in select regimes: the so called “excess buffer” 
approximation. 
In the excess buffer approximation (EBA), 
equations (2) to (4) are simplified by assuming 
that the concentration of free ܽܥଶାbuffer	ሾܤ௜ሿ, 
is high enough such that its loss is negligible. 
The EBA gets its name because this assumption 
of the unsaturability of ܽܥଶା	buffer is likely to 
be valid when ܽܥଶା	buffer is in excess.  

   4.1 Initial and Boundary conditions & 
Geometry of Simulations 
To complete a reaction – diffusion 
formulation for the buffered diffusion of 
 a particular geometry of simulation	ଶା,ܽܥ
must be specified and equation (2) – (4) must 
supplement with boundary conditions and 
initial concentration profiles. If 	ܽܥଶା	is 
released from intracellular ܽܥଶାstores deep 
within a large cell (so that the plasma 
membrane is far away and doesn’t influence 
the time course of the event), and the 
intracellular milieu is homogenous and 
isotropic, then we have spherical symmetry. 
In this case the evolving profiles of ܽܥଶା	and 
buffer (through a function of time and 
distance from the source) will not be a 
function of the polar (f) or azimuthally (q) 
angle. In the case of such spherical or radial 
symmetry the Laplacian ܽܥଶାreduces to 

ൌ	ଶ׏														 ଵ

௥మ
డ

డ௥
ቂݎଶ

డ

డ௥
ቃ ൌ 	

డమ

డ௥మ
	+ଶ
௥

డ

డ௥
                           

The reasonable initial condition for this 
simulation is uniform background ܽܥଶା 
profile of ሾܽܥଶା	ሿஶ = 0.1 ܯߤ. we require 
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buffer far from the source to remain in 
equilibrium with ܽܥଶା	 at all times. 
     lim	

௥→ஶ
ሾܽܥଶାሿ ൌ  ሾܽܥଶା	ሿஶ                    (15)                                                                                                           

  And 
                		 lim	

௥→ஶ
௜ሿܤ]	 ൌ ሾ݅ܤሿஶ                          (16)                                                                   

         Near the source, the boundary conditions 
                 

 lim	
௥→ஶ

ቀ4ܦߨ௖ݎଶ
డሾ஼௔మశሿ

డ௥
ቁ =	(17)                    ߪ 

and 

        lim	
௥→ஶ

ቀ4ܦߨ௖ݎଶ
డሾ஻೔ሿ

డ௥
ቁ=0                             (18)                                                        

We define an influx of free ܽܥଶା	at the rate ߪ	by 
faraday’s law, 

ߪ																										              ൌ ூ೎ೌ
௓ி

    

 
5.  Possibilities of the study 
The modeling of the calcium dynamics in 
myocytes gives new challenges for 
mathematics. The future study will initially 
direct to produce information regarding 
drawbacks, restrictions and gaps in the 
presented models and studies of calcium 
dynamics in cardiac myocytes. Subsequently 
the proposed study may lead to modifications 
an extension of existing models of calcium 
dynamics in cardiac myocytes. Also, it will 
lead to development of new models of 
calcium dynamics in cardiac myocytes. 
Addressing the existing issues and challenges 
of such studies. Apart from this, it will lead to 
development of new mathematical 
approaches for solution involving advanced 
mathematical and numerical techniques like 
integral transforms, special functions, finite 
element, finite difference methods. The 
proposed study will generate information 
about interrelationship among various 
parameters and their impact on calcium 
dynamics in cardiac myocytes. The 
information generated will be better insights 
of mechanisms involved in calcium dynamics 
in cardiac myocytes which will be quite useful 
to biomedical scientists for developing 
protocols for diagnosis and treatment of heart 
diseases. In all the proposed study will 
contribute new knowledge not only to 
mathematical sciences but also to 
computational neurosciences. 
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